Home
Class 12
MATHS
If y=1=x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^...

If `y=1=x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !),` show that `(dy)/(dx)-y+(x^n)/(n !)=0.`

Text Solution

Verified by Experts

`(dy)/(dx)=0+(1)/(1!)+(1)/(2!)(2x)+(1)/(3!)(3x^(2))+...+(1)/(n!)(nx^(n-1))`
`=1+(x)/(1!)+(x^(2))/(2!)+...+(x^(n-1))/((n-1)!)`
`={1+(x)/(1!)+(x^(2))/(2!)+...+(x^(n-1))/((n-1)!)+(x^n)/(n!)}-(x^(n))/(n!)`
`=y-(x^(n))/(n!)`
`"or "(dy)/(dx)-y+(x^(n))/(n!)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find by the definition the differential coefficient of the following: y=1+x/(1!)+x^2/(2!)+x^3/(3!)+……+x^n/(n!) show that dy/dx-y+x^n/(n!)=0

If y = 1 + x + (x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+* * * +(x^(n))/(n!) prove that (dy)/(dx) + (x^(n))/(n!)=y*

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If x^(m)*y^(n)=(x+y)^(m+n) , show that (dy)/(dx)=(y)/(x) .

If y=x+(x^(3))/(3)+(x^(5))/(5)+…oo , show that (dy)/(dx)=(1)/(1-x^(2)) .

If y = x + (x^(3))/(3)+(x^(5))/(5)+* * * show that (dy)/(dx) = (1) /(1 - x^(2)) .

If y=(sin^(-1) x)/(sqrt(1-x^2)) , then show that (1-x^2)(d^2y)/(dx^2)-3x(dy)/(dx)-y=0 .

Statement 1: The coefficient of x^n in (1+x+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !))^3 is (3^n)/(n !) . Statement 2: The coefficient of x^n in e^(3x) is (3^n)/(n !)

dy/dx + n/x y = a/x^(n)

If y=px^(n)+qx^(-n) , show that x^(2)y_(2)+xy_(1)-n^(2)y=0 .