Home
Class 12
MATHS
Find (dy)/(dx) for y=sin(x^2+1)dot...

Find `(dy)/(dx)` for `y=sin(x^2+1)dot`

Text Solution

Verified by Experts

`"Let "y= sin(x^(2)+1).`
Putting `u=x^(2)+1," we get y sin u"`
`therefore" "(dy)/(dx)=cos u and (du)/(dx) = 2x`
`"Now, "(du)/(dx)=(dy)/(du).(du)/(dx)`
`= (cos u) (2x)=2x cos(x^(2)+1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y=sin(2x)

Find (dy)/(dx) for y=sin^(-1)(cosx)

"Find "(dy)/(dx)" for "y=sin(2x^(2)+3x+1).

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

Find (dy)/(dx) when : y^(y)=sin x

Find (dy)/(dx) when : y=sin[2 tan^(-1) sqrt((1-x)/(1+x))]

Find (dy)/(dx)," if "y= sin^(-1)x +sin^(-1)sqrt(1-x^(2)), 0 lt x lt 1 .

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))

Find (dy)/(dx) when y=sin^(-1)x+cos^(-1)x

Find (dy)/(dx) : y = (1)/(sin x cos x )