Home
Class 12
MATHS
The value of sin^(-1)[xsqrt(1-x)-sqrt(x)...

The value of `sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]` is equal to `sin^(-1)x+sin^(-1)sqrt(x)` `sin^(-1)x-sin^(-1)sqrt(x)` `sin^(-1)sqrt(x)-sin^(-1)x` none of these

Text Solution

Verified by Experts

`y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]," where "0lt x lt 1`
`=sin^(-1)[xsqrt(1-(sqrt(x))^(2))-sqrt(x)sqrt(1-x^(2))]`
`=sin^(-1)x-sin^(-1)sqrt(x)`
`[because sin^(-1) x-sin^(-1)y=sin^(-1)(xsqrt(1-y^(2))-ysqrt(1-x^(2)))]`
Differentiating w.r.t.x, we get
`(dy)/(dx)=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-(sqrt(x))^(2)))(d)/(dx)(sqrt(x))`
`=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-x))xx(1)/(2sqrt(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)sin[2tan^(-1)sqrt((1+x)/(1-x))]dx is equal to -

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

int sin^(-1)sqrt((x)/(a+x))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

Evaluate : int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx[0 le x le 1]

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

int x sin^(-1)sqrt((2a-x)/(2a))dx

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))