Home
Class 12
MATHS
if cos y=x cos (a+y), (a!= 0) , then sho...

if cos y=x cos (a+y), `(a!= 0)` , then show that `dy/dx= cos ^2(a+y)/sin a`

Text Solution

Verified by Experts

Given relation is cos y = x cos (a+y). Therefore,
`x=(cos y)/(cos (a+y))`
Differentaiting w.r.t.y, we get
`(dx)/(dy)=(d)/(dy)((cos y)/(cos (a+y)))`
`=((cos (a+y)(-sin y)- cos y (-sin (a+y)))/(cos^(2)(a+y)))`
`=((-cos (a+y) sin y + cos y sin (a+y))/(cos^(2) (a+y)))`
`=((sin (a+y-y))/(cos^(2)(a+y)))=(sin a)/(cos^(2)(a+y))`
`therefore" "(dy)/(dx)=(cos^(2)(a+y))/(sin a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If cosy=xcos(a+y),(ane0) , then show that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

If (cos x)^y = (cos y)^x then show that (dy)/(dx) = (y tan x+log cos y)/(x tan y+log cos x).

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If xsin^3a+ycos^3a = sin a cos a and x sin a- y cos a = 0 , then show that x^2+y^2= 1 .

If x= cos theta+ I sin theta and y= cos psi + I sin psi , then show that (x)/(y)+(y)/(x)= 2 cos (theta- psi) .

If x^2 = a^(sin^(-1)t) and y^2= a^(cos^(-1)t) then show that (dy)/(dx)=-y/x .

If cosx + cosy + cosz = 0 "and" sinx + siny + sinz =0, "then show that" cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.

If y = a cos(logx) + b sin(log x) , show that, x^2(d^2y)/(dx^2)+x(dy)/(dx) + y = 0

If y=cos(2sin^(-1)x) , then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+4y=0