Home
Class 12
MATHS
If x= e^(cos2t) and y = e^(sin2t), the...

If `x= e^(cos2t)` and `y = e^(sin2t)`, then move that `(dy)/(dx) = -(ylogx)/(xlogy)`.

Text Solution

Verified by Experts

`x=e^(cos2t)and y=e^(sin 2t)`
` cos 2t= log x and sin 2t = log y`
`therefore" "cos^(2) 2t +sin^(2) 2t = (log x)^(2) + (log y)^(2)`
`rArr" "(log x)^(2)+(log y)^(2)=1`
Differentiating both sides w.r.t. x, we get
`2log x(1)/(x)+2 log y (1)/(y)(dy)/(dx)=0`
`rArr" "(dy)/(dx)=(-y log x)/(x log y)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(cos(logx))/(log_(e)y)

If x^2 = a^(sin^(-1)t) and y^2= a^(cos^(-1)t) then show that (dy)/(dx)=-y/x .

y=x^(x^(x^------infty) then prove that dy/dx=(y^2)/(x(1-ylogx))

(dy)/(dx)=e^(x+y)+x^(2)e^(y)

dy/dx +2y = 6e^(2)

If x=2 cos t+cos 2t and y=2 sin t-sin2t , then the value of (dy)/(dx) at t=(pi)/(4) is -

If x = sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t) show that (dy)/(dx)= -y/x .

(dy)/(dx)=e^(x-y)+x^(2)e^(-y)

Solve : (dy)/(dx)=e^(y-x)+2

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .