Home
Class 12
MATHS
Let y=x^(3)-8x+7 and x=f(t)." If "(dy)/(...

Let `y=x^(3)-8x+7 and x=f(t)." If "(dy)/(dt)=2 and x=3 at t = 0," `then
` "(dx)/(dt)` at t = 0 is given by`

Text Solution

Verified by Experts

`"Let "y=x^(3)-8x+7`
`therefore" "(dy)/(dx)=3x^(2)-8`
It is given that when t=0, x=3. Therefore, when t=0,
`(dy)/(dx)=3xx3^(2)-8=19`
`"Also ", (dy)/(dx)=(dy//dt)/(dx//dt)`
Since when `t=0, (dy)/(dx)=19 and (dy)/(dt) = 2, from (1)`
`19=(2)/(dx//dt) or (dx)/(dt)=(2)/(19)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let y=x^(3)-8x+7 and x=f(t) given t=0, x=3 Find the value of (dy)/(dx)

dx/dt + x cos t = 1/2 sin 2 t

Find (dy)/(dx) if:- x = 2t,y= t^3

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

If y=int_(x^(2))^(x^(3))1/(logt)dt(xgt0) , then find (dy)/(dx)

If y(t) is a solution of (1+t)dy/dt-t y=1 and y(0)=-1 then y(1) is

If y=int_(0)^(x)(t-1)(t-2)^(2)dt , find x for which (dy)/(dx)=0 .

The second derivative of a single valued function parametrically represented by x=varphi(t)a n dy=psi(t) (where varphi(t)a n dpsi(t) are different function and varphi^(prime)(t)!=0 ) is given by (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^2) (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt))((d^y)/(dt^2))-((d^x)/(dt^))((d^2y)/(dt^2))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt^2))((d^y)/(dt^))-((d^2x)/(dt^2))((d^y)/(dt^))/(((dx)/(dt))^3)