Home
Class 12
MATHS
If f(x)=|x|^(|sinx|), then find f^(prime...

If `f(x)=|x|^(|sinx|),` then find `f^(prime)(-pi/4)`

Text Solution

Verified by Experts

In the neighbourhood of `-pi//4,` we have
`f(x)=(-x)^(-sin x)=e^(-sin x log(-x))`
`"or "f'(x)=_(e)^(- sin x log(-x))(-cos cdot log (-x) -(sin x)/(x))`
`=(-x)^(-sin x)(-cos x cdotlog(-x)-(sin x)/(x))`
`"or "f'(pi//4)=((pi)/(4))^(1//sqrt(2))((-1)/(sqrt(2))log""(pi)/(4)+(4)/(pi)xx((-1)/(sqrt(2)))`
`=((pi)/(4))^(1sqrt(2))((sqrt(2))/(2)log""(4)/(pi)-(2sqrt(2))/(pi))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=xsinx, then find f^(prime)(pi/2)

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(3)) .

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(5)) .

If f(x)=sinx+e^x , then f''(x)

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(3)) using the first principle.

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)