Home
Class 12
MATHS
f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,...

`f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]|` . Then value of `lim_(x->0)(f'(x))/x` is equal to

Text Solution

Verified by Experts

`f'(x)=|{:(-sin x, 1, 0),(2 sin x, x^(2), 2x),(tan x , x, 1):}|+|{:(cos, x, 1),(2 cos x, 2x, 2),(tan x, x, 1):}|`
`|{:(cosx, x, 1),(2sin x, x^(2),2x),(sec^(2)x, 1,0):}|`
`rArr" "f'(0)=|{:(0,1,0),(0,0,0),(0,0,1):}|+|{:(1,0,1),(2,0,2),(0,0,1):}|+|{:(1,0,1),(0,0,0),(1,1,0):}|=0`
`"Now ,"underset(xrarr0)lim(f(x))/(x)=underset(xrarr0)limf'(x)(as f(0)=0)`
`f'(0)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0) (Cosx -1)/x is equal to

The value of lim_(x to 0) ((1+x+x^2)-e^x)/x^2 is equal to

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

If f(x)=|(sinx, cosx, tanx),(x^(3),x^(2),x),(2x,1,1)| then the value of lim_(x to 0) (f(x))/(x^(2)) is -

Evaluate: lim_(x->0)(x2^x-x)/(1-cosx)

if f(x) = |{:(sinx,cosx,tanx),(x^3,x^2,x),(2x,1,1):}| then show that lim_(xto0)(f(x))/x^2=1

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

f(x)= |{:(cos x,,x,,1),(2sin x ,,x,,2x),(sinx ,, x,,x):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x^2)

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=