Home
Class 12
MATHS
If x=a(cost+tsint) and y=a(sint-tcost), ...

If `x=a(cost+tsint)` and `y=a(sint-tcost)`, find `(d^2y)/(dx^2)`

Text Solution

Verified by Experts

It is given that x =a (cos t + t sin t) and
y=a (sin t - t cos t). Therefore,
`(dx)/(dt)=a[-sin t+ sin t + t cos t]= at cos t`
`(dy)/(dt)=a [ cos t -{cos t - t sin t} ] = at sin t`
`therefore" "(dy)/(dx)=(((dy)/(dt)))/(((dx)/(dt)))=(at sin t)/(at cos t)= tan t`
`"Then, "(d^(2)y)/(dx^(2))=(d)/(dx)((dy)/(dx))=(d)/(dx)(tan t)`
`=(d)/(dt) (tan t)(dt)/(dx)`
`=sec^(2) t. (dt)/(dx)`
`sec^(2)t. (1)/(at cos t)`
`(sec^(3) t)/(at)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a(theta+sin theta) and y=a(1-costheta) , find (d^2y)/(dx^2)"at"theta=pi/2

If y=2sin2x+3cos2x , find (d^2y)/dx^2 .

"If "y=sin^(-1)x, "find "(d^(2)y)/(dx^(2)) .

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

If e^y(x+1)=1 , find (d^2y)/(dx^2)

If y=tan^-1(secx+tanx) , find (d^2y)/(dx^2) at x=pi/4 .

If x=acos2t, y=asin2t, find the value of (d^2y)/(dx^2) in terms of t.

If y=(x)/(x+2) find (d^2y)/dx^2

IF x=e^tsint and y=e^tcost , then show that, (x+y)^2(d^2y)/(dx^2)=2(xdy/dx-y) .