Home
Class 12
MATHS
find dy/dxof xy=e^(x-y)...

find `dy/dx`of `xy=e^(x-y) `

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(1+x^(2))`

`y=tan^(-1)((3x-x^(3))/(1-3x^(2)))`
`Put x tan theta.` Then,
`y=tan^(-1)((3 tan theta - tan^(3)theta)/(1-3 tan^(2)theta))`
`=tan^(-1)(tan 3theta)`
`=3theta`
`=3tan^(-1)x`
`therefore" "(dy)/(dx)=(3)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=e^(6x)

Find (dy)/(dx) if x^y=y^x

Find dy/dx where y=e^ (x^4)

(dy)/(dx)+1=e^(x-y)

Find (dy)/(dx) , xy=cot(x+y)

dy/dx - n/xy = e^(x)x^(n)

find dy/dx, when e^(xy)-4xy=4

Find (dy)/(dx) : y = e^(x+1)-5^(x+1)+e^(logx)+log_(a)x+logx^(a)

Find the particular solution of (dy)/(dx)=e^(4x-3y) , given y=0 when x=0

Find (dy)/(dx) , when y=e^(x sin x^(3))+(tan x)^(x)