Home
Class 12
MATHS
If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2...

If `y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)),` then find= `(dy)/(dx)`

Text Solution

Verified by Experts

The correct Answer is:
`(-2)/(sqrt(1-x^(2)))`

`y=sec^(-1)((1)/(2x^(2)-1)),0ltxlt(1)/(sqrt(2))`
Let `x= cos theta.` Therefore,
`y=sec^(-1)((1)/(2cos^(2)theta-1))`
`sec^(-1)((1)/(cos 2 theta))`
`=sec^(-1)(sec 2theta)`
`2theta`
`=2 cos^(-1)x`
`rArr" "(dy)/(dx)=(-2)/(sqrt(1-x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=cos^(-1)""(2x^(2)-1),0ltxlt(1)/(sqrt(2))

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)), then find (dy)/(dx)a tx=0.

If y=(1)/(2 sin x-1) , then find dy/dx

If y=sin^(-1)(sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

If y=(1)/(x^(4)+x^(2)+1) , then find dy/dx

If y=sin^(-1) {(5x+12 sqrt(1-x^(2)))/(13)}, " find " (dy)/(dx)