Home
Class 12
MATHS
Simplify y=tan^(-1)(x/(1+sqrt(1-x^2)))...

Simplify `y=tan^(-1)(x/(1+sqrt(1-x^2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt(1-x^(2)))`

`y=tan^(-1)""((x)/(1+sqrt(1-x^(2))))`
Put `x= sin theta.` Then,
`y=tan^(-1)((sintheta)/(1+sqrt(1-sin^(2)theta)))=tan^(-1)((sintheta)/(1+cos theta))`
`=tan^(-1)""(2sin""(theta)/(2)cos""(theta)/(2))/(2cos^(2)""(theta)/(2))=tan^(-1)tan""(theta)/(2)=(theta)/(2)`
`"So, "y=(sin^(-1)x)/(2)or(dy)/(dx)=(1)/(2sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2))) find dy/dx

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

Differentiate tan^(-1)(x/(1+sqrt((1-x^2)))) +{2tan^(-1)sqrt(((1-x)/(1+x)))} w.r.t. x

"Find"(dy)/(dx)"if "y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

If y= tan^(-1) ((sqrt(1+x^(2))-1)/x) , then y'(1) =

Differentiate tan^(-1)(x/sqrt(1-x^2)) with respect to sin^(-1)((2x)*sqrt(1-x^2)),

or,find the derivatives of tan^(-1) ((sqrt(1+x^2)-1)/x) with respect to tan^(-1) ((2xsqrt(1-x^2))/(1-2x^2)) at x=0.

Draw the graph of y=tan^(-1)((2x)/(1-x^(2)))

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .