Home
Class 12
MATHS
y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)] then...

`y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]` then find `dy/dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt(x(1-x)))`

`y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]`
`=sin^(-1)[sqrt(x)sqrt(1-a)-sqrt(a)sqrt(1-x)]`
`=sin^(-1)[sqrt(x)sqrt(1-(sqrt(a))^(2))-sqrt(a)sqrt(1-(sqrt(x))^(2))]`
`=sin^(-1)sqrt(x)-sin^(-1)sqrt(a)`
`therefore" "(dy)/(dx)=(1)/(sqrt(1-x))xx(1)/(2sqrt(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(x+bx^2) , then find dy/dx

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

If y=sin^(-1)(sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

"if "y=sin^(-1)[sqrt(x)sqrt(1-x^(2))-x sqrt(1-x)] and 0lt x lt 1," then find "(dy)/(dx).

y=sin^(-1)(xsqrt(1-x)+sqrtxsqrt(1-x^2)) show that dy/dx=(1)/(sqrt(1-x^2))-1/(2(sqrt(x-x^2)))

If y=x sin x , then find dy/dx

y=sqrt(tansqrt(x)) find dy/dx

If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t)) find dy/dx

(dy)/(dx)=sqrt(y-x)

y=tan^(-1)(x/(1+sqrt(1-x^2))) find dy/dx