Home
Class 12
MATHS
"If "log(e)(log(e) x-log(e)y)=e^(x^(2(y)...

`"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).`

Text Solution

Verified by Experts

The correct Answer is:
`(1+e^(e^(2)))/(e)`

We have
`log_(e)(log_(e)x-log_(e)y)=e^(x^(2)y)(1-log_(e)x)" ...(1)"`
`"For "x =e, log_(e)(1-log_(e)y)=0.`
`therefore" "y=1`
Differentiating (1), w.r.t.x, we get
`(1)/(log_(e)x-log_(e)y).((1)/(x)-(1)/(y)y')`
`=e^(x^(2)//y)cdot(2xy+x^(2)y')(1-log_(e)x)-(1)/(x)e^(x^(2)y)`
Putting x = e and y = 1, we get
`(1)/(1-0)cdot((1)/(e)-y')=0-(1)/(e)cdote^(e^(2))`
`therefore" "y'(e)=(1+e^(e^(2)))/(e)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If log_(e)2.log_(x)25 = log_(10)16.log_(e )10 , then find the value of x.

If f(x)=log_(x)(log_(e)x) , then the value of f'(e ) is -

If int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k , then find the value of k.

If log_(e)(x^(2)-16)lelog_(e)(4x-11) ,then-

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

If f(x)=e^x and g(x) =log_(e)x, then find (f+g)(1) and fg(1).

(dy)/(dx)=(cos(logx))/(log_(e)y)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

If f(x)=log_(5)log_(3)x , then f'(e ) is equal to