Home
Class 12
MATHS
y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(s...

`y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))`, where `-1 < x < 1`, find `dy/dx`

Text Solution

Verified by Experts

Putting `x^(2)= cos 2theta,` we get
`y=tan^(-1)((sqrt(1+cos theta)+sqrt(1-cos theta))/(sqrt(1+cost 2theta)-sqrt(1-cost 2theta)))`
`=tan^(-1)((sqrt(2cos^(2) theta)+sqrt(2sin^(2) theta))/(sqrt(2cos^(2)theta)-sqrt(2 sin^(2)theta)))`
`=tan^(-1)((cos theta+sintheta)/(cos theta-sin theta))`
`=tan^(-1)((1+tan theta)/(1- tan theta))`
`=tan^(-1)(tan (pi//4 +theta))`
`[{:(because, 0lt x^(2) lt1 rArr0 lt cos 2 theta lt 1),(or ,0 lt 2theta lt pi//2), (or , 0 lt theta lt pi//4) , (or, pi//4 lt pi//4 + theta lt pi//2):}]`
`=(pi)/(4)+theta`
`(pi)/(4)+(1)/(2)cos^(-1) x^(2)`
`therefore" "(dy)/(dx)=0-(1)/(2)xx(1)/(sqrt(1-(x^(2))^(2))).(d)/(dx)(x^(2))`
`-(1)/(2)xx(2x)/(sqrt(1-x^(4)))=(-x)/(sqrt(1-x^(4)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) , then the value of (dy)/(dx) is -

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=theta , then prove that, sin 2 theta=x^(2) .

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

Show that the derivative of (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) w.r.t. sqrt(1-x^(4)) is (sqrt(1-x^(4))-1)/(x^(6)) .

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0 < x < 1