Home
Class 12
MATHS
"Find "(dy)/(dx)" for "y=tan^(-1)sqrt((a...

`"Find "(dy)/(dx)" for "y=tan^(-1)sqrt((a-x)/(a+x)),-altx lta.`

Text Solution

Verified by Experts

`y=tan^(-1){sqrt((a-x)/(a+x))}," where " -a lt x lt a`
Substituting `x= a cos theta,` we get
`y=tan^(-1){sqrt((a-a cos theta)/(a+a cos theta))},`
`=tan^(-1){sqrt((1- cos theta)/(1+ cos theta))},`
`=tan^(-1){sqrt(tan^(2)""(theta)/(2))}`
`=tan^(-1)|tan""(theta)/(2)|`
Also, for `-a lt x lt a, -1 lt cos theta lt 1`
`"or "theta in (0,pi) or (theta)/(2) in (0, (pi)/(2))`
`therefore" "y=tan^(-1)|tan""(theta)/(2)|=tan^(-1)(tan""(theta)/(2))`
`=(theta)/(2)=(1)/(2) cos^(-1) ((x)/(a))`
`"or "(dy)/(dx)=-(1)/(2)xx(1)/(sqrt(1-(x^(2))/(a^(2))))(d)/(dx)((x)/(a))=-(1)/(2sqrt(a^(2)-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ (cosec^2x))

Find (dy)/(dx) when : y= 2 tan^(-1) sqrt((x-a)/(b-x))

"Find "(dy)/(dx)" for "y=log(x-sqrt(a^(2)+x^(2))).

"Find "(dy)/(dx)" for "y=log(x+sqrt(a^(2)+x^(2))).

Find (dy)/(dx) when : y=sin[2 tan^(-1) sqrt((1-x)/(1+x))]

Find (dy)/(dx) when : xy=tan(x+y)

"Find"(dy)/(dx)"if "y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) when : y= tan^(-1)[sqrt((a-b)/(a+b))"tan"(x)/(2)]

Find (dy)/(dx) , when y= x^(x) sin sqrt(x)