Home
Class 12
MATHS
"If "cos y = x cos (a+y)," with cos a"ne...

`"If "cos y = x cos (a+y)," with cos a"nepm1," prove that "(dy)/(dx)=(cos^(2)(a+y))/(sin a).`

Text Solution

Verified by Experts

Given relation is cos y= x cos (a+y). Therefore,
`x=(cos y)/(cos (a+y))`
`(dx)/(dy)=(d)/(dy)(cos y)/(cos (a+y))`
`=(( cos (a+y)(-sin y)-cos y (-sin (a+y)))/(cos^(2) (a+y)))`
`=((-cos (a+y) sin y + cos y sin (a+y))/(cos^(2) (a+y)))`
`=((sin (a+y-y))/(cos^(2)(a+y)))`
`=(sin a)/(cos^(2) (a+y))`
`therefore" "(dy)/(dx)=(cos^(2)(a+y))/(sin a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

(dy)/(dx)=sin(x+y)+cos(x+y)

(dy)/(dx)=(cos^(4)y)/(sin^(4)x+cos^(4)x)

If siny=x sin(a+y) , prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)) .

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

if cos y=x cos (a+y), (a!= 0) , then show that dy/dx= cos ^2(a+y)/sin a

If (cos x)^y = (cos y)^x then show that (dy)/(dx) = (y tan x+log cos y)/(x tan y+log cos x).

If cos y=sqrt((cos 3x)/(cos^(3)x)) , prove that, (dy)/(dx)=sqrt(3 sec x sec 3x) .