Home
Class 12
MATHS
"If "f(x)= cos x cdot cos 2x cdot cos 4x...

`"If "f(x)= cos x cdot cos 2x cdot cos 4x cdot cos 8x cdot cos 16x," then find "f'((pi)/(4)).`

Text Solution

Verified by Experts

`f(x)=(2 sin x cdotcos x cdot cos 2x cdot cos 4x cdot cos 8x cdot cos 16x)/(2 sin x)`
`=(sin 32 x)/(2^(5) sin x)`
`therefore" "f'(x)=(1)/(32)xx(32 cos 32 x xxsin x - cos x xx sin 32 x)/(sin^(2)x)`
`therefore" "f'((pi)/(4))=(32xx(1)/(sqrt(2))-(1)/sqrt(2)xx0)/(32xx((1)/(sqrt(2)))^(2))=sqrt(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

cos 4x = cos 2x

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

If f(x) = cosx. cos2x. Cos4x. Cos8x.cos16x, then f '(pi/4) is :

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

If I_(m,n) = int cos^m x cdot cos nx cdot dx show that (m + n) I_(m,n) = cos^m x cdot sin nx + m I_(m - 1, n-1)

cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x-1

Prove that sin 5 x cos 2x + cos 6 x sin 3 x = sin 8x cos x

Prove : int 2 cos^(2) 2x sin 4x dx = -1/16(4 cos 4x + cos 8x) + c

Prove that, cos 4 x - cos4 y = 8(cos x - cos y)(cos x + cos y)(cos x - sin x)(cos x + sin y)

The general solution of the equation : cos x cdot cos 6x = -1 is :