Home
Class 12
MATHS
If x y+y^2=tanx+y ,then find (dy)/(dx)...

If `x y+y^2`=`tanx+y` ,then find `(dy)/(dx)`

Text Solution

Verified by Experts

The given relation is `xy+y^(2)=tan x + y.`
Differentiating both sides with respect to x, we get
`(d)/(d)(xy)+(d)/(dx)(y^(2))=(d)/(dx(tan x) +(dy)/(dx)`
`"or "[y.1+x.(dy)/(dx)]+2y(dy)/(dx)=sec^(2) x+(dy)/(dx)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(sinx+y) , then find (dy)/(dx)

If tan (x+y) = xy, then find (dy)/(dx)

If y=xe^x , then find dy/dx

If y^x=x^y ,"then find"(dy)/(dx)dot

If x^3+y^3=3a x y , find (dy)/(dx)

If x y=e^((x-y)), then find (dy)/(dx)

If y=x sin x , then find dy/dx

If y=(1-x)tan(x/2) , then find dy/dx

If y=sina^x , then find dy/dx

If y=e^x sinx , then find dy/dx