Home
Class 12
MATHS
If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo...

If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo)))` ,prove that `(dy)/(dx)=(cosx)/(2y-1)`

Text Solution

Verified by Experts

We have `=sqrt(sin x+sqrt(sin x + sqrt(sin x +...,)))`
`rArr y=sqrt(sin x + y)`
`rArr y^(2)= sin x + y`
Differentiating both sides w.r.t. x, we get
`2y(dy)/(dx)=cos x + (dy)/(dx)`
`rArr (dy)/(dx) = (cos x)/(2y-1)`
Alternative method :
From (1), `y^(2)-sin x -y =0`
`therefore (dy)/(dx) =- ("differentitation of f(x,y) w.r.t.x keeping y as constant")/("differenetiation of f(x,y) w.r.t. y keeping x as constant")`
`=-(-cos x)/(2y-1)=( cos x)/(2y-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(sin x+sqrt(sinx+sqrt(sinx+…..oo))) show that (dy)/(dx) =(cos x )/(2y-1)

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+...oo))) , then the value of (dy)/(dx) is -

If y=sqrt(sinx+sqrt(sinx+sqrt(sin+...oo))) , find dy/dx

"If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(dx)=(y^(2)-x)/(2y^(3)-2xy-1)

sqrt(3) sinx + cosx = sqrt(2)

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=(sinx)^((sinx)^((sinx)^(....oo))) show that, (dy)/(dx)=(y^(2)cot x)/(1-ylog(sinx))

If y=(x^(2))/(2)+(x)/(2) sqrt(x^(2)+1)+log sqrt(x+sqrt(x^(2)+1)) , prove that, 2y=x (dy)/(dx)+log((dy)/(dx))

int(dx)/(sinx+sqrt3cosx)

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=