Home
Class 12
MATHS
"If "f(x)=|x|^(|sin x|)," then find "f'(...

`"If "f(x)=|x|^(|sin x|)," then find "f'(-(pi)/(4)).`

Text Solution

Verified by Experts

In the neighbourhood of `-pi//4,` we have
`f(x)=(-x)^(-sin x)=e^(-sin x log(-x))`
`"or "f'(x)=_(e)^(- sin x log(-x))(-cos cdot log (-x) -(sin x)/(x))`
`=(-x)^(-sin x)(-cos x cdotlog(-x)-(sin x)/(x))`
`"or "f'(pi//4)=((pi)/(4))^(1//sqrt(2))((-1)/(sqrt(2))log""(pi)/(4)+(4)/(pi)xx((-1)/(sqrt(2)))`
`=((pi)/(4))^(1sqrt(2))((sqrt(2))/(2)log""(4)/(pi)-(2sqrt(2))/(pi))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=x^4+1 , then find f^-1(x) .

If f(x)=x^3-4x+1 , then find f(0) .

If f(x)=x^3 +4 , then find f^-1(x) .

If f(x)=(4+x)/(4-x) , then find f(2^(-1)) .

If f(x)=sin3x cos4x , then the value of f''((pi)/(2)) is -

If f(x) = cos x cdot cos 2x cdot cos 4x cdot cos 8x cdot cos 16x," then find "f'((pi)/(4)).

If f(x)=4^(x)/(4^(x)+2) then find f(x) + f(1 - x).

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

If f(x) = 4^x/(4^x + 2) , then find f(x) + f(1 - x).