Home
Class 12
MATHS
Let f(x)=(lim)(hvec0)(("sin"(x+h))^(1n(x...

Let `f(x)=(lim)_(hvec0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot` Then `f(pi/2)` equal to 0 (b) equal to 1 In `pi/2` (d) non-existent

Text Solution

Verified by Experts

`"Let "g(x)=(sin x)^(log_(e^(x)))`
`therefore" "f(x)=underset(hrarr0)lim(g(x+h)-g(x))/(h)=g'(x)`
`therefore" "f(x)=g'(x)=(d)/(dx)(e^(log, x. log_(e) sin x))`
`(sin x)^(log_(e)x)((1)/(x)cdotlog_(e) sin x + log_(e) x.(1)/(sin x)cdot cos x)`
`therefore" "f(pi//2)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

(lim)_(hvec0)((e+h)^(1n(e+h))-e)/hi s____

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these

If lim_(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these

If f(a)=lim_(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2)], then f(a)=?

If f(x)=lim_(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal to