Home
Class 12
MATHS
Find the derivative of f(tanx)wdotrdottg...

Find the derivative of `f(tanx)wdotrdottg(secx)a tx=pi/4,` where `f^(prime)(1)=2a n dg^(prime)(sqrt(2))=4.`

Text Solution

Verified by Experts

`"Let "u=f(tan x) and v=g(sec x).` Therefore,
`(du)/(dv)=f'(tan x) sec^(2)x`
`" and "(dv)/(dx)=g'(sec x) sec x tan x`
`therefore" "(du)/(dv)=(du)/(dx)//(dv)/(dx)=(f'(tan x) sec^(2)x)/(g'(sec x) sec x tan x)`
`"or "[(du)/(dv)]_(x=(pi)/(4))=(f'(tan""(pi)/(4)))/(g'(sec""(pi)/(4))sin""(pi)/(4))=(f'(1)sqrt(2))/(g'(sqrt(2)))`
`=(2sqrt(2))/(4)=(1)/(sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of f(tan x) w.r.t. g (sec x) at x=(pi)/(4), where f'(1)=2 and g'(sqrt(2))=4.

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(3)) .

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(5)) .

Find the derivative of the following functions: 2tanx-7secx

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If f(x)=xsinx, then find f^(prime)(pi/2)

Find the derivative of the function given by f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8) and, hence, find f^(prime)(1)dot

Find the derivative of f , where f is given by f(x)=(2x+3)/(x-2)

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

Statement 1: If both functions f(t)a n dg(t) are continuous on the closed interval [a,b], differentiable on the open interval (a,b) and g^(prime)(t) is not zero on that open interval, then there exists some c in (a , b) such that (f^(prime)(c))/(g^(prime)(c))=(f(b)-f(a))/(g(b)-g(a)) Statement 2: If f(t)a n dg(t) are continuous and differentiable in [a, b], then there exists some c in (a,b) such that f^(prime)(c)=(f(b)-f(a))/(b-a)a n dg^(prime)(c)(g(b)-g(a))/(b-a) from Lagranges mean value theorem.