Home
Class 12
MATHS
If (x-a)^(2)+(y-b)^(2)=c^(2), for some c...

If `(x-a)^(2)+(y-b)^(2)=c^(2)`, for some `c gt 0`, prove that
`([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2)))`
is a constant independent of a and b.

Text Solution

Verified by Experts

`" We have "(x-a)^(2)+(y-b)^(2)=c^(2),cgt0`
Differentiating w.r.t. x, we get
`2(x-a)+2(y-b)y'=0`
`"or "(x-a)+(y-b)y'=0`
`"or "y'(x-a)/(y-b)`
Differentiating (1), w.r.t. x again, we get
`1+(y')^(2)+(y-b)y''=0`
`therefore" "([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2)))=([1+(y')^(2)]^(3/2))/(([-1+(y')^(2)])/(y-b))`
`=-(y-b)[1+(y')^(2)]^(1/2)`
`=-(y-b)[1+((x-a)/(y-b))^(2)]^(1/2)`
`=-[(y-b)^(2)+(x-a)^(2)]^(1/2)`
`=-c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If 2y=x(1+(dy)/(dx)) , prove that, (d^(2)y)/(dx^(2)) =constant.

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

Find the order and degree (if defined) of the equation: a=(1[1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)), where a is constant

The degree of the differential equation [1+((dy)/(dx))^(2)]^((3)/(4))=((d^(2)y)/(dx^(2)))^((1)/(3)) is -

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=k , k is a constant, then prove that (dy)/(dx)=(y)/(x) .

If y="("x+sqrt(x^(2)-1)")"^(m) , then prove that, (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

In the parabola y^2=4ax , prove that (d^2y)/(dx^2).(d^2x)/(dy^2)=(-2a)/y^3

If y=tan^-1x , prove that , (x^2+1)(d^2y)/(dx^2)+2xdy/dx=0 .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .