Home
Class 12
MATHS
If y=e^(acos^(-1)x),-1lt=x<1,s how t h a...

If `y=e^(acos^(-1)x),-1lt=x<1,s how t h a t` `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0`

Text Solution

Verified by Experts

`y=e^(a cos^(-1)x)`
`therefore" "(dy)/(dx)=e^(a cos^(-1)x)(-a)/(sqrt(1-x^(2)))=(-ay)/(sqrt(1-x^(2)))`
`"or "(1-x^(2))((dy)/(dx))^(2)=a^(2)y^(2)`
Differentiating both sides with respect to x, we get
`((dy)/(dx))^(2)(-2x)+(1-x^(2))xx2(dy)/(dx)cdot(d^(2)y)/(dx^(2))=a^(2)cdot2ycdot(dy)/(dx)`
`"or "-x(dy)/(dx)+(1-x^(2))(d^(2)y)/(dx^(2))=a^(2).y[(dy)/(dx)ne0]`
`"or "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^(acos^-1x)(-1lexle1) , show that , (1-x^2)(d^2y)/(dx^2)-xdy/dx-a^2y=0

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

If y= e^(sin^(-1)x) and z=e^(-cos^(-1)x) , prove that the value of (dy)/(dz) independent of x.

Find (dy)/(dx) in the following : y= cos^(-1) ((2x)/(1+x^(2))), -1 lt x lt1 .

If y=cos^(-1)sqrt((sqrt(1+x^2)+1)/(2sqrt(1+x^2))),t h e n(dy)/(dx) is equal to (a) 1/(2(1+x^2)),x in R (b) 1/(2(1+x^2)),x >0 (c) (-1)/(2(1+x^2)),x<0 (d) 1/(2(1+x^2)),x<0

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1

Draw the graph of y=|x|^(1/2) for -1lt=x<1.

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

Find (dy)/(dx) in the following : y= cos^(-1) ((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

A curve is given by y={(sqrt(4-x^2)),0lt=x<1and sqrt((3x)),1lt=xlt=3. Find the area lying between the curve and x-axis.