Home
Class 12
MATHS
If x=a (cos t + t sin t) and y=a ( sin t...

If `x=a (cos t + t sin t) and y=a ( sin t- t cos t)`, find `(d^(2)y)/(dx^(2))`

Text Solution

Verified by Experts

It is given that x =a (cos t + t sin t) and
y=a (sin t - t cos t). Therefore,
`(dx)/(dt)=a[-sin t+ sin t + t cos t]= at cos t`
`(dy)/(dt)=a [ cos t -{cos t - t sin t} ] = at sin t`
`therefore" "(dy)/(dx)=(((dy)/(dt)))/(((dx)/(dt)))=(at sin t)/(at cos t)= tan t`
`"Then, "(d^(2)y)/(dx^(2))=(d)/(dx)((dy)/(dx))=(d)/(dx)(tan t)`
`=(d)/(dt) (tan t)(dt)/(dx)`
`=sec^(2) t. (dt)/(dx)`
`sec^(2)t. (1)/(at cos t)`
`(sec^(3) t)/(at)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a(cos t+t sin t) and y=a(sin t-t cos t)," find "(dy)/(dx) " at " t=(3pi)/(4)

cos t dx/dt + sin t = 1

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .

If x = 3 cos t - 2 cos^3 t,y = 3 sin t- 2 sin^3 t, then dy/dx is

x = e^(-t) (a cos t + b sin t )

If x=2 cos t+cos 2t and y=2 sin t-sin2t , then the value of (dy)/(dx) at t=(pi)/(4) is -

If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t)) find dy/dx

If x=t^(2) and y=log t , find (dy)/(dx) .

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

dx/dt + x cos t = 1/2 sin 2 t