Home
Class 12
MATHS
If f(x),g(x)a n dh(x) are three polyno...

If `f(x),g(x)a n dh(x)` are three polynomial of degree 2, then prove that `phi(x)=|[f(x)g(x)h(x)];[f'(x)g'(x) h '(x)];[f' '(x)g' '(x )h ' '(x)]|` is: constant

Text Solution

Verified by Experts

`"Let "f(x)=a_(1)x^(2)+a_(2)x+a_(3),g(x)=b_(1)x^(2)+b_(2)x+b_(3), and h(x)=c_(1)x^(2)+c_(2)x+c_(3)." Then,"`
`f'(x)=2a_(1)x+a_(2),g'(x)=2b_(1)x+b_(2),h'(x)=2c_(1)x+c_(2)`
`f'(x)=2a_(1),g''(x)=2b_(1),h''(x)=2c_(1),`
`"and "f'''(x)=g'''(x)=h'''(x)=0`
In order to prove that `phi(x)` is a constant polynomial, it is sufficient to show that `phi'(x)=0` for all values of x, where
`phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|`
`therefore" "phi'(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|`
`+|{:(f(x),g(x),h(x)),(f''(x),g''(x),h''(x)),(f''(x),g''(x),h''(x)):}|`
`+|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f'''(x),g'''(x),h'''(x)):}|`
`=+0+|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(0,0,0):}|`
= 0 + 0 + 0 = 0 for all values of x
`therefore" "phi(x)=` constant for all
Hence, `phi(x)` is a constant polynomial.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.

Prove that lim_(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x)

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

int [f(x)g"(x) - f"(x)g(x)]dx is

If f: RrarrR and g:RrarrR are two given functions, then prove that 2min.{f(x)-g(x),0}=f(x)-g(x)-|g(x)-f(x)|

If h(x)=[f(x)]^(2)+[g(x)]^(2) and f'(x)=g(x), f''(x)=-f(x) , h(5)=10 find h(10).

If g(x) is the inverse function and f'(x) = sin x then prove that g'(x) = cosec [g(x)]

If f(x)=1/(4x^(2)) , then proved that (f(x-h)-f(x+h))/h=x/((x^(2)-h^(2))^(2))

The functions f(x) , g(x) and h(x) satiafy the relations, f'(x) = g (x+1) and g'(x)= h (x-1) then f''(2x)=?

If y=|(f(x),g(x),h(x)),(l,m,n),(a, b,c)| , prove that, (dy)/(dx)=|(f'(x),g'(x),h'(x)),(l,m,n),(a, b,c)|