Home
Class 12
MATHS
f(x)+f(y)=f((x+y)/(1-xy)) ,for allx,yinR...

`f(x)+f(y)=f((x+y)/(1-xy))` ,for all`x,yinR`.`(xy!=1)`,and `lim_(x->0) f(x)/x=2`.Find`f(sqrt3)`and `f'(-2)`.

Text Solution

Verified by Experts

f(x) + f(y) = `f((x+y)/(1-xy)) " " (1)`
Putting x = y = 0 , we get f(0) = 0
Putting y = -x , we get
f(+x) + f(-x) = f(0)
or f(-x) = -f(x) `" "` (2)
Also , `underset(x to 0)("lim") (f(x))/(x) = 2 `
Now , f'(x) `=underset(hto0)("lim")(f(x+h) - f(x))/(h) " " (3)`
`underset(h to 0)("lim") (f(x+h) + f(-x))/(h) " " `[Using (2)]
`= underset(hto0)("lim")f((x+h-x)/(1-(x+h)(-x)))/(h) " " ` [Using (1)]
`=underset(h to 0)("lim")[(f((h)/(1+x(x+h))))/(h)]`
`underset(h to 0)("lim") (f((h)/(1+xh+x^(2))))/(((h)/(1+xh + x^(2)))) xx ((1)/(1 +xh + x^(2)))`
`underset(h to0)("lim")(f((h)/(1+xh + x^(2))))/(((h)/(1 +xh + x^(2)))) xx underset(h to0) ("lim")(1)/(1 +xh+x^(2))`
= ` 2 xx (1)/(1+ x^(2)) = (2)/(1+x^(2)) " " ("Using" underset( xto 0) ("lim") *(f(x))/(x) = 2)`
Integrating both sides we get
f(x) = 2 `tan^(-1) (x) + c` , where f(0) = 0 `implies c = 0`
Thus , f(x) = `2 tan^(-1)x ` .Hence ,
`f((1)/(sqrt3)) = 2 tan^(-1) ((1)/(sqrt3)) = 2 (pi)/(6) = (pi)/(3)`
and , f'(1) = `(2)/(1+ 1^(2)) = (2)/(2) = 1 `
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

If f(x+y)=f(x)f(y) for all x, y and f(x)=1+xg(x) , where lim_(xto0)g(x)=1 . Show that f'(x)=f(x) .

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

If f(x + y) = f(x)f(y) for all x, y and and f(x) = 1 + x g(x), where lim_(xrarr0)g(x)=1 ) , show that f'(x) = f(x).

If f(x+y+z)=f(x)f(y)f(z)ne0 , for all x, y, z and f(2)=4,f'(0)=3 , find f'(2) .

If f(x+y+z)=f(x) f(y) f(z) ne 0 for all x,y,z and f(2)=5, f'(0)=2, find f'(2).

If f(x + y) = f(x) - f(y), forall x, y in R , then show that f(3) = f(1)

If f(x)f(y) = f(x) + f(y) + f(xy) -2 for all real values of x and y and f(2) = 5, find f(4) and f(1/4) .