Home
Class 12
MATHS
A real valued function satisfies the rel...

A real valued function satisfies the relation `f(x+y)=f(x)+f(y)+(e^x-1)(e^y-1)`, `AAx,y in R`. If f'(0) = 2, find f(x).

Text Solution

Verified by Experts

We have
`f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AAx, in R" ...(1)"`
Differentiating w.r.t. x, keeping y as constant, we get
`f(x+y)=f'(x)+e^(x)(e^(y)-1)`
Putting x=0
`f'(y)=f'(0)+e^(y)-1`
`therefore" "f'(y)=e^(y)+1" "(as f'(0)=2)`
`therefore" "f(y)=e^(y)+y+c`
Putting x = y = 0 in (1), we get
f(0)=f(0)+f(0)+0
`therefore" "f(0)=0`
In (2), putting y=0, we get
0=1 +0+c
`rArr" "c=-1`
`therefore" "f(x)=e^(x)+x-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA x, y, in R and f(0) ne 0 , then

A function satisfies the conditions f(x+y)=f(x) + f(y), AA x, y in R then f is

If the function f satisfies the reation f(x+y)+f(x-y)=2f(x) f(y) Aax,yin RR and f(0) ne 0 then ____

If a function satisfies (x-y) f(x+y)-(x+y) f(x-y) = 2(x^2y - y^3), AA x, y in R and f(1) = 2, then

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

A real valued function f (x) satisfied the functional relation f (x-y)=f (x)f(y) -f(a-x) f(a+y) where a is a given constant and f(0) =1. Then f (2a-x) is equal to-

A continuous function f(x)onR->R satisfies the relation f(x)+f(2x+y)+5x y=f(3x-y)+2x^2+1forAAx ,y in R Then find f(x)dot

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

y=f(x), where f satisfies the relation f(x+y)=2f(x)+xf(y)+ysqrt(f(x)) , AAx,y epsilon R and f'(0)=0.Then f(6)is equal ______