Home
Class 12
MATHS
Find function f(x) which satisfy the rel...

Find function f(x) which satisfy the relation `f((x)/(y))=(f(x))/(f(y))AA x, y in R, y ne 0, f(y) ne 0 and f'(1)=2`

Text Solution

Verified by Experts

`"We have "f((x)/(y))=(f(x))/(f(y))`
Differentiating w.r.t. x, keeping y as constant we get`f'((x)/(y))(1)/(y)=(f'(x))/(f(y))`
Putting x=y, we get
`f'(1)(1)/(x)=(f'(x))/(f(x))`
`rArr" "(f'(x))/(f(x))=(2)/(x)`
Intergrating both sides, we get
`log_(e)f(x)=2log_(e)x+log c`
`rArr" "f(x)=cx^(2)`
In (1), putting x = y = 1, we get f(1) = 1
`therefore" "f(x)=x^(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA x, y, in R and f(0) ne 0 , then

If the function f satisfies the reation f(x+y)+f(x-y)=2f(x) f(y) Aax,yin RR and f(0) ne 0 then ____

A function satisfies the conditions f(x+y)=f(x) + f(y), AA x, y in R then f is

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

A real valued function satisfies the relation f(x+y)=f(x)+f(y)+(e^x-1)(e^y-1) , AAx,y in R . If f'(0) = 2, find f(x).

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

If f(x+y)=f(x)f(y)AA x,y in R, f(0) ne 0 then F(x) = {f(x)/(1+(f(x)))^2 is

A continuous function f(x)onR->R satisfies the relation f(x)+f(2x+y)+5x y=f(3x-y)+2x^2+1forAAx ,y in R Then find f(x)dot

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

A function f: R -> R satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then a. f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these