Home
Class 12
MATHS
y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1...

`y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1`

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(1+x^(2))`

`y=sin^(-1)((2x)/(1+x^(2)))`
Let `x = tan theta.` Therefore,
`y=sin^(-1)((2tan theta)/(1+tan^(2)theta))`
`=sin^(-1)(sin 2 theta)`
`=2theta`
`=2tan^(-1)x`
`therefore" "(dy)/(dx=(d)/(dx)(2 tan^(-1)x)`
`=2(d)/(dx)(tan^(-1)x)`
`(2)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the values of int_(0)^(1)sin^(-1).(2x)/(1+x^(2))dx(-1lexle1)

Draw the graph of y=sin^(-1)((2x)/(1+x^(2)))

tan ^(-1)x-tan ^(-1)y=sin ^(-1) ""(x-y)/(sqrt((1+x^(2))(1+y^(2)))

3 sin ^(-1 ) ""(2x )/(1+x^(2))-4cos^(-1) ""(1-x^(2))/(1+x^(2))+2tan ^(-1)""(2x )/(1-x^(2))=(pi)/(3)

tan ^(-1)""(1-x)/(1+x)- tan ^(-1 )""(1-y)/(1+y) = sin ^(-1) ""(y-x)/(sqrt((1+x^(2))(1+y^(2)))

tan [(1)/(2) sin^(-1)""(2x)/(1+x^(2))+(1)/(2) cos ^(-1)""(1-y^(2))/(1+y^(2))], xy ne 1

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

Find (dy)/(dx) in the following : y= sin^(-1)((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Integrate : int sin^(-1)(3x-4x^(3))dx[-(1)/(2)lexle(1)/(2)]