Home
Class 12
MATHS
y=cos^(-1)""(2x^(2)-1),0ltxlt(1)/(sqrt(2...

`y=cos^(-1)""(2x^(2)-1),0ltxlt(1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(-2)/(sqrt(1-x^(2)))`

`y=sec^(-1)((1)/(2x^(2)-1)),0ltxlt(1)/(sqrt(2))`
Let `x= cos theta.` Therefore,
`y=sec^(-1)((1)/(2cos^(2)theta-1))`
`sec^(-1)((1)/(cos 2 theta))`
`=sec^(-1)(sec 2theta)`
`2theta`
`=2 cos^(-1)x`
`rArr" "(dy)/(dx)=(-2)/(sqrt(1-x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), then find= (dy)/(dx)

Prove that cos^(-1)x=2sin^(-1)(sqrt (1-x)/sqrt2)

If y=cos^(-1)sqrt((sqrt(1+x^2)+1)/(2sqrt(1+x^2))),t h e n(dy)/(dx) is equal to (a) 1/(2(1+x^2)),x in R (b) 1/(2(1+x^2)),x >0 (c) (-1)/(2(1+x^2)),x<0 (d) 1/(2(1+x^2)),x<0

Evaluate : cos^(-1)x+cos^(-1)[(x)/(2)+(sqrt(3-3x^(2)))/(2)]((1)/(2) le x le 1)

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Solve : 2sin^(-1)x=cos^(-1)x,0ltxlt1

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

cos^(-1){1/2x^(2)+sqrt(1-x^(2))sqrt(1-(x^(2))/(4))}=cos^(-1)((x)/(2))-cos^(-1)x holds for what values of x?