Home
Class 12
MATHS
y=tan^(-1)(x/(1+sqrt(1-x^2))) find dy/dx...

`y=tan^(-1)(x/(1+sqrt(1-x^2)))` find `dy/dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt(1-x^(2)))`

`y=tan^(-1)""((x)/(1+sqrt(1-x^(2))))`
Put `x= sin theta.` Then,
`y=tan^(-1)((sintheta)/(1+sqrt(1-sin^(2)theta)))=tan^(-1)((sintheta)/(1+cos theta))`
`=tan^(-1)""(2sin""(theta)/(2)cos""(theta)/(2))/(2cos^(2)""(theta)/(2))=tan^(-1)tan""(theta)/(2)=(theta)/(2)`
`"So, "y=(sin^(-1)x)/(2)or(dy)/(dx)=(1)/(2sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)((2x)/(1-x^2)) ,then find dy/dx

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

If y=log_e(tan^-1sqrt(1+x^2)) find dy/dx

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

If y=tan^-1((sqrt(1+x^2)-1)/x) , then dy/dx at x = 0 is

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If y=btan^(-1)(x/a+tan^(-1)y/x) ,find (dy)/(dx)dot

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

If y=sin^(-1) {(5x+12 sqrt(1-x^(2)))/(13)}, " find " (dy)/(dx)

"Find"(dy)/(dx)"if "y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0