Home
Class 12
MATHS
If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,...

If `y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx ,` then find the value of `lim_(x->0)(((dy)/(dz)))/x`

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(5)`

We have `y=f(x^(3))`
`therefore" "(dy)/(dx)=f'(x^(3))3x^(2)=3x^(2)tan x^(3)`
Also, `z=g(x^(5))`
`therefore" " (dz)/(dx)=g'(x^(5))5x^(4)=5x^(4)sec x^(5)`
`therefore" "(dy)/(dz)=(dy//dx)/(dz//dx)=(3x^(2) tan x^(3))/(5x^(4)sec x^(5))`
`=(3)/(5x^(2))xx(tan x^(3))/(sec x^(5))`
`"or "underset(xrarr0)lim((dy//dz))/(x)=underset(xrarr0)lim(3 tan x^(3))/(5x^(3) sec x^(5))`
`=(3)/(5)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

Let g: RvecR be a differentiable function satisfying g(x)=g(y)g(x-y)AAx , y in R and g^(prime)(0)=aa n dg^(prime)(3)=bdot Then find the value of g^(prime)(-3)dot

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If y=(a+b x^(3/2))/(x^(5/4))a n dy^(prime)=0a tx=5, then the value of (a^2)/(b^2) is_______

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(5)) .

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(3)) .

If f(a) = 2, f'(a) = 1, g(a) = -1 and g'(a) = 2 , find the value of lim_(x rarr a)(g(x)f(a) - g(a)f(x))/(x-a)