Home
Class 12
MATHS
If y =sin (sin x) and (d^(2)y)/(dx^(2))+...

If `y =sin (sin x)` and `(d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0`, then find `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`cos^(2)x sin (sin x)`

`(dy)/(dx)=cos (sin x) cos x`
`(d^(2)y)/(dx^(2))=-cos ( sin x) sin x + cos x [-sin (sin x)] cos x`
`therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x= -c os ( sin x) sin x-cos^(2) x sin (sin x)+cos (sin x )cos x tan x`
`=-cos^(2)x sin (sin x)`
`therefore" "(d^(2)y)/(dx^(2))+(dy)/(dx)tan x + cos^(2)x sin (sin x) =0`
`therefore" "f(x)=cos^(2)x sin (sin x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"If "y=sin^(-1)x, "find "(d^(2)y)/(dx^(2)) .

(dy)/(dx)=(sin2y)/(x+tany)

If y=2sin2x+3cos2x , find (d^2y)/dx^2 .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx) =0 .

If y=x sin x , then find dy/dx

If y=sqrtx+(1)/(2sqrtx)and2x(dy)/(dx)+y=f(x) , then find f(x).

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

y=(x+cos x)/(x+sin x) , find dy/dx

If y = sin^(2).(x)/(2) , then (dy)/(dx) =

If y=x^2 tan x , then find dy/dx