Home
Class 12
MATHS
If x=acos^3theta,y=bsin^3theta ,fin d (d...

If `x=acos^3theta,y=bsin^3theta` ,fin d `(d^3y)/(dx^3)` at `theta=0.`

Text Solution

Verified by Experts

The correct Answer is:
Does not exist

`x=acos^(3) theta, y = b sin^(3)theta`
`y_(1)=(dy)/(dx)=(3b sin^(2) theta cos theta)/(-3a cos^(2) theta sin theta)`
`=-(b)/(a) tan theta, if sin theta ne 0, cos theta ne 0`
Therefore, `y_(1)` does not exist a `theta = 0.`
Hence, `y_(2) and y_(3)` do not exist at `theta=0.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=-a cos theta and y= a sin theta , find (dy)/(dx) .

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3dot

If x=acos^(3)theta" and "y=bsin^(3)theta , then find (d^(2)y)/(dx^(2)) at theta=(pi)/(4).

If x=acos^3theta,y=a sin^3theta, then find the value of (d^2y)/(dx^2) at θ=π/6

If x=a cos^(4)theta, y=a sin^(4)theta then the value of (dy)/(dx) at theta=(3pi)/(4) is -

If x=2cos theta -cos2 theta and y=2sin theta -sin2 theta , find (d^2y)/(dx^2) at theta=pi/2 .

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

If x=sqrt(3)(3 sin theta+sin 3theta), y=sqrt(3)(3 sin theta+cos 3 theta) , find (d^(2)y)/(dx^(2)) at theta=(pi)/(3) .

If x=a sec^(2)theta and y=a tan^(3) theta, " find " (dy)/(dx)" at " theta=(pi)/(4) .

If x=a cos theta, y=a sin theta , then the value of (dy)/(dx) is -