Home
Class 12
MATHS
The integral int[2x^[12]+5x^9]/[x^5+x^3...

The integral `int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx` is equal to-

A

`(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

B

`(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C`

C

`(-x^(10))/(2(x^(5)+x^(3)+1)^(2))`

D

`(-x^(5))/((x^(5)+x^(3)+1)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
A

` I=int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx`
`=int(((2)/(x^(3))+(5)/(x^(6))))/((1+(1)/(x^(2))+(1)/(x^(5)))^(3))dx`
` "Let " 1+(1)/(x^(2))+(1)/(x^(5))=t`
` :. (dt)/(dx)=(-2)/(x^(3))-(5)/(x^(6))`
` :. int(-dt)/(t^(3))=(1)/(2t^(2))+C`
`=(1)/(2(1+(1)/(x^(2))+(1)/(x^(5)))^(2))+C`
`=(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(1)^(5)[|x-3|+|1-x|]dx is equal to-

The value of the integral int_(1)^(5)[|x-3|+|1-x|]dx is equal to

Integrate: int(2x^2 - 3x+9)/(x^2+4x-5)dx

int(x^(5))/((4x^(2)+ 1)^(4))dx is equal to

Integrate : int 5^(2x)dx

The value of the integral int x^(3)log x dx is equal to -

The integral int_2^4 (logx^2)/((logx^2)+log(36-12x+x^2)) dx is equal to:

int (x^2 - 1)/((x^3)sqrt(2x^4- 2x^2 + 1)) dx is equal to

Integrate : int dx/(1 + x^(3))

int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to