Home
Class 12
MATHS
If x gt 0, y gt 0, z gt 0, the least val...

If `x gt 0`, `y gt 0`, `z gt 0`, the least value of
`x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y)` is

A

`3`

B

`1`

C

`5`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let `log_(e)x=a`, `log_(e)y=b`, `log_(e)z=c`
`impliesx=e^(a)`, `y=e^(b)`, `z=e^(c )`
So, given expression `e^(a(b-c))+e^(b(c-a))+e^((a-b))`
Using A.M. ge G.M.
`:.(e^(a(b-c))+e^(b(c-a))+e^(c(a-b)))/(3)` ge [a^(a(b-c)+b(c-a)+c(a-b))]^(1//3)`
`:.e^(a(b-c))+e^(b(c-a)+e^(c(a-b)))ge 3`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If x, y and z be greater than 1, then the value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)| is

If x gt 1 , y gt 1 , z gt 1 are in G.P. , then log_(ex)e , log_(ey)e , log_(ez)e are in

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Find the value of (yz)^(log y - log z) xx (zx)^(log z - log x) xx (xy)^(log x - log y) .

Prove that x^(log y - logz) xx y^(log z - logx) xx z^(log x - log y) = 1 .

Evaluate int(log_(ex)e*log_(e^(2)x)e*log_(e^(3)x)e)/(x)dx .

(dy)/(dx)=(cos(logx))/(log_(e)y)

Draw the graph of y= x ^((1)/(log_(e)x)) .

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx