Home
Class 12
MATHS
Minimum value of f(x)=cos^(2)x+(secx)/(4...

Minimum value of `f(x)=cos^(2)x+(secx)/(4)`, `x in (-(pi)/(2),(pi)/(2))` is

A

`3//2`

B

`3//4`

C

`3//8`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `f(x)=cos^(2)x+(secx)/(4)`
`=cos^(2)x+(1)/(4cosx)`
For `x in (-(pi)/(2),(pi)/(2))`, `cosx gt 0`
Now `f(x)=cos^(2)x+(1)/(8cosx)+(1)/(8cosx)`
Using `A.M. ge G.M.`
`implies(cos^(2)x+(1)/(8cosx)+(1)/(8cosx))/(3) ge ((1)/(8^(2)))^((1)/(3))=[((1)/(4))^(3)]^((1)/(3)`
`impliescos^(2)x+(1)/(4cosx) ge (3)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

The maximum and minimum values of [4 cos x^(2)cos ((pi)/(3)+ x^(2))cos ((pi)/(3)-x^(2))] respectively are-

Find the maximum and minimum values of : sinx+cos^(2)x((pi)/(2)ltxle(3pi)/(2))

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

Find the absolute maximum and minimum values of the function f given by f(x) = cos^(2)x+sinx, x in [ 0,pi]

Find the range of f(x)=sec(pi/4cos^2x)

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

Find the values of k so that the function f is continuous at the indicated point in Exercises 26 to 29. f(x)={{:((k cos x)/(pi -2x)," if "x ne (pi)/(2)),(3," if "x= (pi)/(2)):}" at "x=(pi)/(2) .

Solve cos2x >|sinx|,x in (pi/2,pi)

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is