Home
Class 12
MATHS
The minimum value of (x^4+y^4+z^2)/(x y ...

The minimum value of `(x^4+y^4+z^2)/(x y z)` for positive real numbers `x ,y ,z` is (a) `sqrt(2)` (b) `2sqrt(2)` (c) `4sqrt(2)` (d) `8sqrt(2)`

A

`sqrt(2)`

B

`2sqrt(2)`

C

`4sqrt(2)`

D

`8sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` By `A.M ge G.M.`
`x^(4)+y^(4) ge 2x^(2)+y^(2)` and `2x^(2)y^(2)+z^(2) ge sqrt(8)xyz`
`implies (x^(4)+y^(4)+z^(2))/(xyz) ge sqrt(8)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

Find square root of x + y + z + 2 sqrt(yz) + 2sqrt(zx) + 2sqrt(xy)

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

The area inside the parabola 5x^2-y=0 but outside the parabola 2x^2-y+9=0 is (a) 12sqrt(3) sq units (b) 6sqrt(3) sq units (c) 8sqrt(3) sq units (d) 4sqrt(3) sq units

Find the value of 8xy (x^(2) +y^(2)) when x +y = sqrt3 , and x -y = sqrt2

Given that x,y,z are positive real numbers such that xyz=32 , the minimum value of sqrt((x+2y)^(2)+2z^(2)-15) is equal to

If x ,y in R satify the equation x^2+y^2-4x-2y+5=0, then the value of the expression [(sqrt(x)-sqrt(y))^2+4sqrt(x y)]//(x+sqrt(x y)) is a. sqrt(2)+1 b. (sqrt(2)+1)/2 c. (sqrt(2)-1)/2 d. (sqrt(2)+1)/(sqrt(2))

The largest value of a for which the circle x^2+y^2=a^2 falls totally in the interior of the parabola y^2=4(x+4) is 4sqrt(3) (b) 4 (c) 4(sqrt(6))/7 (d) 2sqrt(3)

If x>y prove that sqrt(y+sqrt(2xy-x^2))+sqrt(y-sqrt(2xy-x^2)) = sqrt(2x) .

If A and B are foci of ellipse (x-2y+3)^(2)+(8x +4y +4)^(2) =20 and P is any point on it, then PA +PB = (a) 2 (b) 4 (c) sqrt(2) (d) 2sqrt(2)