Home
Class 12
MATHS
If a, b, c are the sides of triangle , t...

If `a`, `b`, `c` are the sides of triangle , then the least value of `(a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a)` is

A

`1//3`

B

`1`

C

`3`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`(b)` `c+a-b`, `b+c-a`,`a+b-c` are all positive
Using `A.M. ge G.M.`
`:.(a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) ge [(abc)/((c+a-b)(a+b-c)(b+c-a))]^(1//3)`........`(i)`
Also , `a^(2) ge a^(2)-(b-c)^(2)`
`implies a^(2) ge (a+b-c)(a-b+c)`
Similarly `b^(2) ge (b+c-a)(b-c+a)`
`c^(2) ge (c+a-b)(c-a+b)`
`:.a^(2)b^(2)c^(2) ge (a+b-c)^(2)(b+c-a)^(2)(c+a-b)^(2)`
Thus `abc ge (a+b-c)(b+c-a)(c+a-b)`
`implies (abc)/((c+a-b)(a+b-c)(b+c-a)) ge 1`
Hence, from `(i) (abc)/((c+a-b)(a+b-c)(b+c-a)) ge 1`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a,b,c are positive real number, then the least value of (a+b+c)(1/a+1/b+1/c) is

If a,b,c are in HP , thn the value of (b+a)/(b-a)+(b+c)/(b-c) is

If a, b and c represent the lengths of sides of a triangle then the possible integeral value of (a)/(b+c) + (b)/(c+a) + (c)/(a +b) is _____

If A, B, C are the angles of a triangle then tan ((B+C)/2)=

If a,b,c are the sides of a triangle and s=(a+b+c)/2 , prove that 8(s-a)(s-b)(s-c)leabc .

Simplify the (a+b)(a-b)+(b+c)(b-c)+(c+a)(c-a)

Given that a , b , c , are the side of a A B C which is right angled at C , then the minimum value of (c/a+c/b)^2 is