Home
Class 12
MATHS
If x gt 0, (x^(n))/(1+x+x^(2)+...+x^(2n)...

If `x gt 0`, `(x^(n))/(1+x+x^(2)+...+x^(2n))` is

A

A. ` le (1)/(2n+1)`

B

B. ` lt (2)/(2n+1)`

C

C. ` ge (1)/(2n+1)`

D

D. ` gt (2)/(2n+1)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `x+(1)/(x) ge 2`,……..`x^(n)+(1)/(x^(n)) ge 2`
On adding `(x+(1)/(x))+(x^(2)+(1)/(x^(2)))+…+(x^(n)+(1)/(x^(n))) ge 2n`
`:. ((1)/(x^(n))+(1)/(x^(n-1))+..(1)/(x))+1+(x+x^(2)+...+x^(n))ge 1+2n`
`:.((1+x+...+x^(n-1)+x^(n))+x^(n+1)+x^(n+2)+....+x^(2n))/(x^(n))ge 1+2n`
`:.(x^(n))/(1+x+....+2^(2n)) le (1)/(1+2n)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

If y=(1+x)(1+x^(2))(1+x^(4))…..(1+x^(2n)) then the value of ((dy)/(dx)) at x = 0 is

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n) x^(n) Show that C_(1)^(2)+2*C_(2)^(2)+3*C_(3)^(2)....+n*C_(n)^(2)=((2n-1)!)/([(n-1)!]^(2))

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0).C_(n)+C_(1).C_(n-1)+C_(2).C_(n-2)+....+C_(n).C_(0)=((2n)!)/((n!)^(2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+.....+(C_(n)^(2))/(n+1)=((2n+1)!)/({(n+1)!}^(2))

The coefficients of x^n in (1+x/(1!)+x^2/(2!)+……+x^n/(n!))^2 is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+.....+C__(n-1)C_(n)=((2n)!)/((n+1)!(n-1)!)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))=(n(n-1))/(2)