Home
Class 12
MATHS
If a,b,c are positive real numbers and 2...

If `a,b,c` are positive real numbers and `2a+b+3c=1`, then the maximum value of `a^(4)b^(2)c^(2)` is equal to

A

`(1)/(3*4^(8))`

B

`(1)/(9*4^(7))`

C

`(1)/(9*4^(8))`

D

`(1)/(27*4^(8))`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Consider positive numbers
`(2a)/(4)`, `(2a)/(4)`,`(2a)/(4)`,`(2a)/(4)`,`(b)/(2)`,`(b)/(2)`,`(3c)/(2)`,`(3c)/(2)`
Using `A.M. ge G.M.`
`((2a)/(4)+(2a)/(4)+(2a)/(4)+(2a)/(4)+(b)/(2)+(b)/(2)+(3c)/(2)+(3c)/(2))/(8)`
`ge (((2a)/(4)*(2a)/(4)*(2a)/(4)*(2a)/(4)*(b)/(2)*(b)/(2)*(3c)/(2)*(3c)/(2))/(8))^((1)/(8)`
`implies(2a+b+3c)/(8) ge ((3^(2))/(2^(8))*a^(4)b^(2)c^(2))^((1)/(8))`
`(1)/(8) ge ((3^(2)a^(4)b^(2)c^(2))^((1)/(8)))/(2)`
`impliesa^(4)b^(2)c^(2) le (1)/(4^(8)*3^(2))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are distinct positive real numbers and a^(2)+b^(2) +c^(2)=1 then the value of ab+bc+ca is-

If three positive real number a,b,c are in AP with abc =4 , then the minimum value of b is

If a,b,c are positive real number, then the least value of (a+b+c)(1/a+1/b+1/c) is

If three positive real numbers a,b ,c are in A.P such that a b c=4 , then the minimum value of b is a) 2^(1//3) b) 2^(2//3) c) 2^(1//2) d) 2^(3//23)

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a^2b^3c^4 is equal to a. 2^(18)xx3^2 b. 2^(18)xx3^3 c. 2^(19)xx3^2 d. 2^(19)xx3^3

Given a matrix A=[(a,b,c), (b,c,a), (c,a,b)],where a ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

If a , b , c are real numbers forming an A.P. and 3+a , 2+b , 3+c are in G.P. , then minimum value of ac is