Home
Class 12
MATHS
If x(1), x(2) and x(3) are the positive ...

If `x_(1)`, `x_(2)` and `x_(3)` are the positive roots of the equation `x^(3)-6x^(2)+3px-2p=0`, `p inR`, then the value of `sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1)))` is equal to

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `x^(3)-6x^(2)+3px-2p=0`
`A.M.=(x_(1)+x_(2)+x_(3))/(3)=(6)/(3)=2`
`H.M.=(3)/((1)/(x_(1))+(1)/(x_(2))+(1)/(x_(3)))=(3x_(1)x_(2)x_(3))/(sumx_(1)x_(2))=2`
`:, A.M.=H.M.impliesx_(1)=x_(2)=x_(3)=2`
`sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1)))`
`=(pi)/(2)+0-(pi)/(4)=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If the roots of the equation 6x^3-11x^2+6x-1 =0 are in H.P., then the roots are

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

3 sin ^(-1 ) ""(2x )/(1+x^(2))-4cos^(-1) ""(1-x^(2))/(1+x^(2))+2tan ^(-1)""(2x )/(1-x^(2))=(pi)/(3)

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

If x gt 0 , then the value of sin{tan^-1((1-x^2)/(2x))+cos^-1((1-x^2)/(1+x^2))} is equal to

(1)/(2)cos ^(-1)""((5 cos x +3)/(5+3 cos x))= tan^(-1)""((1)/(2)tan ""(x)/(2))

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)