Home
Class 12
MATHS
If a=cos((4pi)/3)+isin((4pi)/3) then ...

If `a=cos((4pi)/3)+isin((4pi)/3)` then ((1+a)/2)^3n is

A

purely real

B

purely imaginary

C

`0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `a=cos'(4pi)/(3)+isin"(4pi)/(3)=omega^(2)`
`:.``|(1,1,1),(1, omega^(2),omega),(1,omega,omega^(2))|`=`3(omega-omega^(2))` purely imaginery
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation Z^3+1=0 are called cube roots of unity.Clearly Z=-1 is a root and the other roots are complex comjugate root and they are omega=cos((2pi)/3) +isin((2pi)/3) and omega^2=cos((4pi)/3)+isin((4pi)/3) 1+omega+omega^2=0 (1+omega^2)^7+(1+omega)^7 equals

If a= b cos ""(2pi)/(3) = c cos ""(4pi)/(3), then the value of (ab+ bc +ca) is-

If alpha=cos((8pi)/11+isin((8pi)/11 then Re(alpha+alpha^2+alpha^3+alpha^4+alpha^5) is

if a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .

If x_r = cos(pi/3^r)+isin (pi/3^r) : prove that x_1x_2x_3 ....upto infinity=i

By using properties of determinats. Prove that- |(sintheta,costheta,sin2theta),(sin(theta+(2pi)/3), cos(theta + (2pi)/3) ,sin(2theta + (4pi)/3)),(sin(theta-(2pi)/3) ,cos(theta - (2pi)/3), sin (2theta - (4pi)/3))|= 0

Evaluate cos^2((pi)/(3))+sin^2((pi)/6)-tan^2((pi)/4)

cos((2pi)/7)+cos((4pi)/7)+cos((6pi)/7)

Convert the complex number z=(i-1)/(cos(pi/3)+isin(pi/3)) in the polar form.

If x_r=cos(pi/2^r)+isin(pi/2^r) then x_1x_2x_3.......infty =

CENGAGE PUBLICATION-DETERMINANT-Single correct Answer
  1. the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):...

    Text Solution

    |

  2. If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |[x/...

    Text Solution

    |

  3. If a=cos((4pi)/3)+isin((4pi)/3) then ((1+a)/2)^3n is

    Text Solution

    |

  4. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  5. If Delta1=|[x, b, b],[ a, x, b],[ a, a, x]| a n d Delta2=|[x, b],[ a, ...

    Text Solution

    |

  6. If a^(2) + b^(2) + c^(2) + ab + bc + ca le 0 for all, a, b, c in R, th...

    Text Solution

    |

  7. Product of roots of equation |(1+2x,1,1-x),(2-x,2+x,3+x),(x,1+x,1-x^2)...

    Text Solution

    |

  8. If x!=0,y!=0,z!=0a n d|1+x1 1 1+y1+2y1 1+z1+z1+3z|=0 , then x^(-1)+y^(...

    Text Solution

    |

  9. If Y=SX, Z=tX all the variables being differentiable functions of x an...

    Text Solution

    |

  10. If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),...

    Text Solution

    |

  11. If A = [a(ij)] is a 2 xx2 matrix such that a(ij)=i+2j, then A will be

    Text Solution

    |

  12. If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ...

    Text Solution

    |

  13. If a ,b ,c are different, then the value of x satisfying |[0,x^2-a, x^...

    Text Solution

    |

  14. Let x gt 0, y gt 0, z gt 0 are respectively the 2^(nd), 3^(rd), 4^(th)...

    Text Solution

    |

  15. If a,b,c,d gt 0 , x in R and (a^(2)+b^(2)+c^(2))x^(2)-2(ab+bc+cd)x+b^(...

    Text Solution

    |

  16. Show that |^x Cr^x C(r+1)^x C(r+2)^y Cr^y C(r+1)^y C(r+2)^z Cr^z C(r+1...

    Text Solution

    |

  17. If |{:(.^(9)C(4),.^(9)C(5),.^(10)C(r)),(.^(10)C(6 ),.^(10)C(7),.^(11)C...

    Text Solution

    |

  18. If either of the two P, Q and R are equal and P+Q+R=180^(@), then the ...

    Text Solution

    |

  19. In a triangle ABC, if a,b,c are the sides opposite to angles A, B, C r...

    Text Solution

    |

  20. {:("If",a = 1 + 2 + 4 + ..."to n terms"),(,b = 1 + 3 + 9 + ..."to n te...

    Text Solution

    |