Home
Class 12
MATHS
the value of determinant |{:(1+alpha,1,1...

the value of determinant `|{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}|` is

A

`2^(n)`

B

`2^(n-1)`

C

`2^(2n)`

D

`2^((n-1)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` For `S_(n),a_(11),a_(12),a_(13),….a_(1(n-1))` we have two options `'1'` or `'-1'`m but for `a_(1n)` we have only one way depending upon the product `(a_(11)*a_(12)*a_(13)*…..*a_(1(n-1)))`
`:.` For `R_(1)` we have `2^(n-1)` ways
Similarly for `R_(2),R_(3),R_(4),....R_(n-1)` we have `2^(n-1)` ways
For `R_(n)` we have only one way.
Hence total number of ways `(2^(n-1))^(n-1)=2^((n-1)^(2))`
For `S_(3)`, we have `2^((3-1)^(2))=1` elements.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Single correct Answer|42 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(1+a,1,1),(1,1+b,1),(1,1,1+c)| is -

Find the value of determinant : |(10,-1),(-1,7)|

The value of the determinant |((1)/(a),1,bc),((1)/(b),1,ca),((1)/(c),1,ab)| is -

Find the value of the determinant |[1, 1, 1, 1],[ 1, 2, 3, 4],[ 1, 3, 6, 10 ],[1 ,4 ,10 ,20]|

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha,beta,gamma,sigma are the roots of the equation x^4+4x^3-6x^2+7x-9=0, then the value of (1+alpha^2)(1-beta^2)(1-gamma^2)(1-sigma^2) is a. -75 b. 25 c. 0 d. 75

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

If alpha and beta are complementary angles to each other, the find the value of (1-sin^2 alpha)(1-cos^2 alpha)(1+cot^2 beta)(1+tan^2 beta)

For alpha, beta, gamma in R , let A=[(alpha^(2),6,8),(3,beta^(2),9),(4,5,gamma^(2))] and B=[(2alpha,3,5),(2,2beta,6),(1,4,2gamma-3)] If tr(A)=tr(B), then find the value of (1/alpha)+(1/beta)+(1/gamma)