Home
Class 12
MATHS
A(1/(sqrt(2)),1/(sqrt(2))) is a point on...

`A(1/(sqrt(2)),1/(sqrt(2)))` is a point on the circle `x^2+y^2=1` and `B` is another point on the circle such that arc length `A B=pi/2` units. Then, the coordinates of `B` can be (a) `(1/(sqrt(2)),-1/sqrt(2))` (b) `(-1/(sqrt(2)),1/sqrt(2))` (c) `(-1/(sqrt(2)),-1/(sqrt(2)))` (d) none of these

A

`(-1,2sqrt(2))`

B

`(2sqrt(2),1)`

C

`((23)/(9),(10sqrt(2))/(9))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B


`(x_(1)-1)/(cos theta) =(y_(1)-2sqrt(2))/(sin theta) =2` (using parametric form of straight line)
Also, `x_(1)^(2) +y_(1)^(2) =9`
On solving, we get
`(1+2 cos theta)^(2) +(2sqrt(2)+2 sin theta)^(2) =9`
`cos theta =(7)/(9)` or `-1`
Then the required point is `(-1,2sqrt(2)), ((23)/(9),(10sqrt(2))/(9))`
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|9 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Complete solution set of tan^2(sin^(-1)x)>1 is (a) (-1,-1/(sqrt(2)))uu(1/(sqrt(2)),1) (b) (-1/(sqrt(2)),1/(sqrt(2)))~{0} (c) (-1,1)~{0} (d) none of these

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (a) (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) (c) 1/(2xsqrt(x^2-1)) (d) none of these

A square is inscribed in the circle x^2+y^2-2x+4y+3=0 . Its sides are parallel to the coordinate axes. One vertex of the square is (a) (1+sqrt(2),-2) (b) (1-sqrt(2),-2) (c) (1,-2+sqrt(2)) (d) none of these

If |cos^(-1)((1-x^2)/(1+x^2))| < pi/3,t h e n (a) x in [-1/3,1/(sqrt(3))] (b) x in [-1/(sqrt(3)),1/(sqrt(3))] x in [0,1/(sqrt(3))] (d) none of these

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

The value of |[-1, 2, 1],[ 3+2sqrt(2), 2+2sqrt(2), 1],[ 3-2sqrt(2), 2-2sqrt(2), 1]| is equal to a. zero b. -16sqrt(2) c. -8sqrt(2) d. none of these

If f^(prime)(x)=1/(-x+sqrt(x^2+1)) and f(0)=(1+sqrt(2))/2 then f(1) is equal to- (a) log"(sqrt(2)+1) (b) 1 (c) 1+sqrt(2) (d) none of these

The value of lim_(x->1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(sin^(-1)x))) is (a) -1/(sqrt(2)) (b) 1/(sqrt(2)) (c) sqrt(2) (d) -sqrt(2)

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is pi (b) (sqrt(3))/2 (c) 2sqrt(2) (d) none of these

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.