Home
Class 12
MATHS
The real numbers a and b are distinct. C...

The real numbers a and b are distinct. Consider the circles
`omega_(1): (x-a)^(2)+ (y-b)^(2) = a^(2)+b^(2)` and
`omega_(2): (x-b)^(2) +(y-a)^(2) = a^(2) +b^(2)`
Which of the following is (are) true?

A

A. The line `y = x` is an axis of symmetry for the circles

B

B. The circles intersect at the origin and a point, P(say), which lies on the line `y = x`

C

C. The line `y = x` is the radical axis of the pair of circles.

D

D. The circles are orthogonal for all `a ne b`.

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

Interchanging x and y in one equation gives the other equation. So, (a) is true,
Clearly (0,0) satisfies both circles and `y = x` is radical axis. So (b) and (c ) are true. The centres are (a,b) and (b,a) the radii are both `sqrt(a^(2)+b^(2))`. The distance between the centres `= |a-b| sqrt(2)`
If circles are orthogonal, `|a-b| sqrt(2) = 2(a^(2)+b^(2))`
Now, `2(a^(2)+b^(2)) ne 2(a^(2)-b^(2))`, for all a and b. Thus, (d) is false.
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos

Similar Questions

Explore conceptually related problems

y^(2)= a(b^(2) - x^(2))

Show that the length of the common chord of the circles (x-a)^(2) + (y-b)^(2) = c^(2) and (x-b)^(2) + (y-a)^(2) = c^(2) is sqrt(4c^(2) -2(a-b)^(2)) unit.

The line y= mx +c touches the hyperbola b^(2) x^(2) - a^(2) y^(2) = a^(2)b^(2) if-

If y - mx = sqrt(a^(2) m^(2) + b^(2)) and x + my = sqrt(a^(2) + b^(2) m^(2)) , then prove that x^(2) + y^(2) = a^(2) + b^(2)

Solve (by any method) : (x+a)/(2a+b)=(y+2b)/(a+b) bx+ay=a^(2)+b^(2)

If the chord of contact of tangents from a point on the circle x^(2) + y^(2) = a^(2) to the circle x^(2)+ y^(2)= b^(2) touches the circle x^(2) + y^(2) = c^(2) , then a, b, c are in-

If a,b,c are distinct positive real numbers and a^(2)+b^(2) +c^(2)=1 then the value of ab+bc+ca is-

Solve (by any method) : (a-b)x+(a+b)y=a^(2)-2ab-b^(2) (a+b)(x+y)=a^(2)+b^(2)

If a : b = x : y , then show that (a^(2) + b^(2)) : a^(3)/(a + b) : : (x^(2) + y^(2)) : x^(3)/(x + y)

If 1, omega, omega ^(2) are the cube roots of unity, then the value of (x+y) ^(2) + (x omega +y omega ^(2))^(2) + (x omega ^(2)+ y omega )^(2) is equal to-