Home
Class 12
MATHS
Find the centre of the circle whose para...

Find the centre of the circle whose parametric equation is `x= -1+2 cos theta , y= 3+2 sin theta`.

Text Solution

Verified by Experts

We have `(x+1)/(2)=cos theta` and `(y-3)/(2)=sin theta`
Squaring and adding, we get
`((x+1)/(2))^(2)+((y-3)/(2))^(2)=1`
or `(x+1)^(2)+(y-3)^(2)=4`
Centre of the circle is `(-1,3)` and radius is 2.
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE PUBLICATION|Exercise Examples|13 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 4.1|1 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

Find the centre of the circle whose parametric equations are x = - (1)/(2) (1 + 5 cos theta ) , y = (1)/(2) (-2 + 5 sin theta) .

Find the equation of the curve whose parametric equations are x=1+4costheta,y=2+3sintheta,theta in R .

Find the equation to the circle whose parametric equations are, x = (1)/(2)(1+5 cos theta), y = (1)/(2)(-2 + 5sin theta)

If theta be a variable parameter find the curve whose parametric equations are x=1/4(3-cosec^2theta)&y=2+cottheta

Find (dy)/(dx), " if "x= a cos theta, y= a sin theta .

Eliminate theta : x=2 sin theta, y=3 cos theta.

Find the area of the (i) circle x =a cos theta , y=a sin theta (ii) ellips x=acos theta ,y=bsin theta by the method of integration

The centre of the circel x=2+3 cos theta, y= 3 sin theta -1 is-

The root of the equation 1-cos theta = sin ""theta /2 are -

The parametric equations of a circle are, x = (1)/(2)(-3+4 cos theta), y = (1)/(2)(1+4 sin theta) . Find the equation of the circle.