Home
Class 12
MATHS
If two circles x^(2)+y^(2)+c^(2)=2ax and...

If two circles `x^(2)+y^(2)+c^(2)=2ax` and `x^(2)+y^(2)+c^(2)-2by=0` touch each other externally , then prove that `(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))`

Text Solution

Verified by Experts

The two circles are `x^(2)+y^(2)-2ax+c^(2)=0` and `x^(2)+y^(2)-2by+c^(2)=0`.
Respective centres are `C_(1)(a,0)` and `C_(2)(0,b)`.
Respective radii are `r_(1)=sqrt(a^(2)-c^(2))` and `r_(2)=sqrt(b^(2)-c^(2))`
Since the two circles touch each other externally , we have
`C_(1)C_(2)=r_(1)+r_(2)`.
`implies sqrt(a^(2)+b^(2))=sqrt(a^(2)-c^(2))+sqrt(b^(2)-c^(2))`
`implies a^(2)+b^(2)=a^(2)-c^(2)+b^(2)-c^(2)+2sqrt(a^(2)-c^(2))sqrt(b^(2)-c^(2))`
`implies c^(2)=sqrt(a^(2)-c^(2))sqrt(b^(2)-c^(2))`
`implies c^(4)=a^(2)b^(2)-c^(2)(a^(2)+b^(2))+c^(4)`
`implies a^(2)b^(2)=c^(2)(a^(2)+b^(2))`
`implies (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE PUBLICATION|Exercise Examples|13 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 4.1|1 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

If the circles x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other, prove that, (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

If the circles x ^(2) +y^(2) +2gx +2fy =0 and x ^(2) +y^(2) +2g'x+ 2f'y=0 touch each other then-

If two cricles x^2 + y^2 + 2gx + 2fy = 0 and x^2 +y^2 + 2g'x + 2f'y = 0 touch each other, then

The circles whose equations are x^2+y^2+c^2=2ax and x^2+y^2+c^2-2by=0 will touch one another externally, if :

If the circles x^2+y^2+2ax+c^2=0 and x^2+y^2+2by+c^2=0 touch each other,prove that 1/a^2+1/b^2=1/c^2

The two circles x^2+y^2=ax and x^2+y^2=c^2 (cgt0) touch each other if

Find the condition if the circle whose equations are x^2+y^2+c^2=2a x and x^2+y^2+c^2-2b y=0 touch one another externally.

If one of the circles x^2+y^2+2ax+c=0 and x^2+y^2+2bx+c=0 lies within the other, then :

If the circles x^2+y^2-9=0 and x^2+y^2+2alphax+2y+1=0 touch each other, then alpha is (a) -4/3 (b) 0 (c) 1 (d) 4/3

If x=a sec theta cosphi, y = b sec theta sin phi and z=c tan theta , then prove that (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=1.